
 
 una distribución gamma es un tipo general de distribución estadística que está relacionada con la distribución beta y surge naturalmente en procesos para los cuales los tiempos de espera entre eventos distribuidos de Poisson son relevantes. Las distribuciones Gamma tienen dos parámetros libres, Etiquetados  y
 y  , algunos de los cuales se ilustran arriba.,c0a5aa4824″>
, algunos de los cuales se ilustran arriba.,c0a5aa4824″>





for  , where
, where  is a complete gamma function, and
 is a complete gamma function, and  an incomplete gamma function., Con
 an incomplete gamma function., Con  un entero, esta distribución es un caso especial conocido como la distribución Erlang.,02b6″>
 un entero, esta distribución es un caso especial conocido como la distribución Erlang.,02b6″>
 





Now let  (not necessarily an integer) and define
 (not necessarily an integer) and define  to be the time between changes., Then the above equation can be written
 to be the time between changes., Then the above equation can be written
|  | (13) | 
for  . This is the probability function for the gamma distribution, and the corresponding distribution function is
. This is the probability function for the gamma distribution, and the corresponding distribution function is
|  | (14) | 
where  is a regularized gamma function.,
 is a regularized gamma function.,
se implementa en Wolfram Language como la función GammaDistribution.,id=»c43570dc99″>




giving moments about 0 of
|  | (19) | 
(Papoulis 1984, p., 147).,iv>






The gamma distribution is closely related to other statistical distributions., If  ,
,  , …,
, …,  are independent random variates with a gamma distribution having parameters
 are independent random variates with a gamma distribution having parameters  ,
,  , …,/div>
, …,/div>



Also, if  and
 and  are independent random variates with a gamma distribution having parameters
 are independent random variates with a gamma distribution having parameters  and
 and  , then
, then  is a beta distribution variate with parameters
 is a beta distribution variate with parameters  ., Ambos pueden derivarse de la siguiente manera.,
., Ambos pueden derivarse de la siguiente manera., 






where  is the beta function, which is a beta distribution.,
 is the beta function, which is a beta distribution.,
If  and
 and  are gamma variates with parameters
 are gamma variates with parameters  and
 and  , the
, the  is a variate with a beta prime distribution with parameters
 is a variate with a beta prime distribution with parameters  and
 and  .,iv>
.,iv>



The ratio  therefore has the distribution
 therefore has the distribution
|  | (50) | 
which is a beta prime distribution with parameters  .,
.,






where  is the Pochhammer symbol.,0822e6ea8″>
 is the Pochhammer symbol.,0822e6ea8″>
so the cumulants are
|  | (63) | 
If  is a normal variate with mean
 is a normal variate with mean  and standard deviation
 and standard deviation  , then
, then
|  | (64) | 
is a standard gamma variate with parameter  .,
.,