감마 분포는 일반적인 유형의 통계적 분포와 관련된 베타 유통 및 자연적으로 발생한 프로세스에서는 대기 시간 사이의 푸아송되 이벤트가 관련이 있습니다. 감마 분포가 매개변수 표시된
및
,몇 가지의 그림이다.,c0a5aa4824″>
for
, where
is a complete gamma function, and
an incomplete gamma function.,
정수로,이 분포는 Erlang 분포로 알려진 특별한 경우입니다.,02b6″>
Now let
(not necessarily an integer) and define
to be the time between changes., Then the above equation can be written
|
(13)
|
for
. This is the probability function for the gamma distribution, and the corresponding distribution function is
|
(14)
|
where
is a regularized gamma function.,
Gammadistribution 함수로 Wolfram 언어로 구현됩니다.,id=”c43570dc99″>
giving moments about 0 of
|
(19)
|
(Papoulis 1984, p., 147).,iv>
The gamma distribution is closely related to other statistical distributions., If
,
, …,
are independent random variates with a gamma distribution having parameters
,
, …,/div>
Also, if
and
are independent random variates with a gamma distribution having parameters
and
, then
is a beta distribution variate with parameters
., 둘 다 다음과 같이 도출 될 수있다.,
where
is the beta function, which is a beta distribution.,
If
and
are gamma variates with parameters
and
, the
is a variate with a beta prime distribution with parameters
and
.,iv>
The ratio
therefore has the distribution
|
(50)
|
which is a beta prime distribution with parameters
.,
where
is the Pochhammer symbol.,0822e6ea8″>
so the cumulants are
|
(63)
|
If
is a normal variate with mean
and standard deviation
, then
|
(64)
|
is a standard gamma variate with parameter
.,피>