
 
Uma distribuição gama é um tipo geral de distribuição estatística que está relacionado com a distribuição beta e surge naturalmente em processos para os quais os tempos de espera entre Poisson distribuído eventos são relevantes. Distribuições gama têm dois parâmetros livres, rotulados e  , alguns dos quais são ilustrados acima.,c0a5aa4824″>
, alguns dos quais são ilustrados acima.,c0a5aa4824″>





for  , where
, where  is a complete gamma function, and
 is a complete gamma function, and  an incomplete gamma function., Com
 an incomplete gamma function., Com  um inteiro, esta distribuição é um caso especial conhecido como a distribuição Erlang.,02b6″>
 um inteiro, esta distribuição é um caso especial conhecido como a distribuição Erlang.,02b6″>
 





Now let  (not necessarily an integer) and define
 (not necessarily an integer) and define  to be the time between changes., Then the above equation can be written
 to be the time between changes., Then the above equation can be written
|  | (13) | 
for  . This is the probability function for the gamma distribution, and the corresponding distribution function is
. This is the probability function for the gamma distribution, and the corresponding distribution function is
|  | (14) | 
where  is a regularized gamma function.,
 is a regularized gamma function.,
é implementado na Linguagem Wolfram como a função GammaDistribution.,id=”c43570dc99″>




giving moments about 0 of
|  | (19) | 
(Papoulis 1984, p., 147).,iv>






The gamma distribution is closely related to other statistical distributions., If  ,
,  , …,
, …,  are independent random variates with a gamma distribution having parameters
 are independent random variates with a gamma distribution having parameters  ,
,  , …,/div>
, …,/div>



Also, if  and
 and  are independent random variates with a gamma distribution having parameters
 are independent random variates with a gamma distribution having parameters  and
 and  , then
, then  is a beta distribution variate with parameters
 is a beta distribution variate with parameters  ., Ambos podem ser derivados da seguinte forma.,
., Ambos podem ser derivados da seguinte forma., 






where  is the beta function, which is a beta distribution.,
 is the beta function, which is a beta distribution.,
If  and
 and  are gamma variates with parameters
 are gamma variates with parameters  and
 and  , the
, the  is a variate with a beta prime distribution with parameters
 is a variate with a beta prime distribution with parameters  and
 and  .,iv>
.,iv>



The ratio  therefore has the distribution
 therefore has the distribution
|  | (50) | 
which is a beta prime distribution with parameters  .,
.,






where  is the Pochhammer symbol.,0822e6ea8″>
 is the Pochhammer symbol.,0822e6ea8″>
so the cumulants are
|  | (63) | 
If  is a normal variate with mean
 is a normal variate with mean  and standard deviation
 and standard deviation  , then
, then
|  | (64) | 
is a standard gamma variate with parameter  .,
.,