A gamma-eloszlás általános típusú statisztikai eloszlás, amely kapcsolódik a béta-eloszlás, valamint felmerül természetesen a folyamatok, amelyek a várakozási idők között Poisson elosztott események lényegesek. A Gamma-disztribúcióknak két szabad paraméterük van:
és
, amelyek közül néhány fent látható.,c0a5aa4824″>
for
, where
is a complete gamma function, and
an incomplete gamma function., A
egész szám esetén ez az eloszlás egy speciális eset, amelyet Erlang eloszlásnak neveznek.,02b6″>
Now let
(not necessarily an integer) and define
to be the time between changes., Then the above equation can be written
|
(13)
|
for
. This is the probability function for the gamma distribution, and the corresponding distribution function is
|
(14)
|
where
is a regularized gamma function.,
a Wolfram nyelvben a GammaDistribution függvényként kerül végrehajtásra.,id=”c43570dc99″>
giving moments about 0 of
|
(19)
|
(Papoulis 1984, p., 147).,iv>
The gamma distribution is closely related to other statistical distributions., If
,
, …,
are independent random variates with a gamma distribution having parameters
,
, …,/div>
Also, if
and
are independent random variates with a gamma distribution having parameters
and
, then
is a beta distribution variate with parameters
., Mindkettő a következőképpen származtatható.,
where
is the beta function, which is a beta distribution.,
If
and
are gamma variates with parameters
and
, the
is a variate with a beta prime distribution with parameters
and
.,iv>
The ratio
therefore has the distribution
|
(50)
|
which is a beta prime distribution with parameters
.,
where
is the Pochhammer symbol.,0822e6ea8″>
so the cumulants are
|
(63)
|
If
is a normal variate with mean
and standard deviation
, then
|
(64)
|
is a standard gamma variate with parameter
.,