A gamma-eloszlás általános típusú statisztikai eloszlás, amely kapcsolódik a béta-eloszlás, valamint felmerül természetesen a folyamatok, amelyek a várakozási idők között Poisson elosztott események lényegesek. A Gamma-disztribúcióknak két szabad paraméterük van: és , amelyek közül néhány fent látható.,c0a5aa4824″>
for , where is a complete gamma function, and an incomplete gamma function., A egész szám esetén ez az eloszlás egy speciális eset, amelyet Erlang eloszlásnak neveznek.,02b6″>
Now let (not necessarily an integer) and define to be the time between changes., Then the above equation can be written
(13)
|
for . This is the probability function for the gamma distribution, and the corresponding distribution function is
(14)
|
where is a regularized gamma function.,
a Wolfram nyelvben a GammaDistribution függvényként kerül végrehajtásra.,id=”c43570dc99″>
giving moments about 0 of
(19)
|
(Papoulis 1984, p., 147).,iv>
The gamma distribution is closely related to other statistical distributions., If , , …, are independent random variates with a gamma distribution having parameters , , …,/div>
Also, if and are independent random variates with a gamma distribution having parameters and , then is a beta distribution variate with parameters ., Mindkettő a következőképpen származtatható.,
where is the beta function, which is a beta distribution.,
If and are gamma variates with parameters and , the is a variate with a beta prime distribution with parameters and .,iv>
The ratio therefore has the distribution
(50)
|
which is a beta prime distribution with parameters .,
where is the Pochhammer symbol.,0822e6ea8″>
so the cumulants are
(63)
|
If is a normal variate with mean and standard deviation , then
(64)
|
is a standard gamma variate with parameter .,