ガンマ分布

ガンマ分布は、ベータ分布に関連する一般的なタイプの統計分布であり、ポアソン分布イベント間の待ち時間が関連 ガンマ分布には、というラベルの二つの自由パラメータがあります。,c0a5aa4824″>

(4)
(5)

for , where is a complete gamma function, and an incomplete gamma function., 整数の場合、この分布はErlang分布と呼ばれる特殊なケースです。,02b6″>

(11)
(12)

Now let (not necessarily an integer) and define to be the time between changes., Then the above equation can be written

(13)

for . This is the probability function for the gamma distribution, and the corresponding distribution function is

(14)

where is a regularized gamma function.,

これはWolfram言語でGammaDistribution関数として実装されています.,id=”c43570dc99″>

(17)
(18)

giving moments about 0 of

(19)

(Papoulis 1984, p., 147).,iv>

(30)
(31)

The gamma distribution is closely related to other statistical distributions., If , , …, are independent random variates with a gamma distribution having parameters , , …,/div>

(33)

Also, if and are independent random variates with a gamma distribution having parameters and , then is a beta distribution variate with parameters ., いずれも以下のように導出できる。,

(43)
(44)

where is the beta function, which is a beta distribution.,

If and are gamma variates with parameters and , the is a variate with a beta prime distribution with parameters and .,iv>

(49)

The ratio therefore has the distribution

(50)

which is a beta prime distribution with parameters .,

(54)
(55)
(56)

where is the Pochhammer symbol.,0822e6ea8″>

so the cumulants are

(63)

If is a normal variate with mean and standard deviation , then

(64)

is a standard gamma variate with parameter .,

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です